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Theory for competing reactions with initially separated components
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The asymptotic long-time properties of a system with initially separated components and two competing
irreversible reaction&\, +B—C; andA,+B—C, are studied. It is shown that the system is characterized by
a single reaction zone, with width growing lik&, in which both reactions occur. Numerical computations of
the mean-field kinetic equations confirm these asymptotic results.
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The behavior of irreversible reaction-diffusion systems da,lat=Dd’a, /x>~ Ry, (3
with initially separated reactants has attracted much research
interest in the last decadd—22). The elementary irrevers- da,1dt=Dd%a,lIx2— Ry, (4)
ible reaction A+B—C with initially separated reactants
leads to the formation of a distinctive reaction zonelfiGa abl gt=D #?bl 92— R, — Ry, (5)
and Ra&z [1] have shown that in the long-time limit the
reaction zone properties scale gs-t¥%, w~tY8, R(x;,t) 9. |at=Dd%cs |9x2+R 6)
~172B andR(t)~t~ %2 wherex; andw are the center co- ! ' v
ordinate and the width of the reaction front, respectively, 9C,19t=Dd%c, 92+ Ry, @)

R(x:,t) and R(t)=[R(x,t)dx are the local and the global
reaction rate, respectively. These scaling relations, obtainegith initial conditions
from the mean-field equation&], are valid for space dimen-

sion d greater than the critical dimensiah=2 [6]. These ay(x,0)=ayoH(x),a,(x,0)=a,H(x),b(x,0)

results have been confirmed by a variety of approaches

[1,7,9-12,14,1p including experiments [2,3,5,16—20\ =bo[1-H(x)],c1(x,0)=c5(x,0)=0.  (8)
More complex reactions such asA+nB— C were studied i . . .

in Refs.[6,9,12,21. H(x) is the Heaviside step function. In the mean-field ap-

A possible level of complexity of the single irreversible Proximation we have®; =kja;b, Ry=kpasb, wherek; and
reaction system is the system with two competing elemenk are the forward reaction kinetics constants for reactions
tary irreversible reaction,; + B—C, andA,+B— C,. This (1) and (2), respectively. For simplicity, the same diffusion
system exhibits rich spatiotemporal reaction zone pattern op=onstantD of all components is assumed. Since the sums
served in experimerfti8,19. New patterns of properties of @1+C1, @+Cz, andb+c,+c, are controlled by ordinary
this system, such as two reaction centers, and distinctive spéiffusion equations, they are given by
tiotemporal behavior oR(t) and R(x,t), are predicted by

numerical calculations. aptcy=ayd 1+erf(z)]=Fy(2), ©)
In this Brief Report we study analytically and numerically

the long-time asymptotic behavior of the system of two irre- ax+Cy=ayl 1+erf(z)]=Fx(2), (10

versible reaction®\; +B—C; andA,+B—C,. It is shown

that the long-time dynamics is similar to the single irrevers- b+ci+co=bo[1-erf(z)]=F3(2). (11

ible reaction pattern, i.e., both irreversible reactions on the

macroscopic scale- VDt occur in one reaction zone. Inside Herez=x/\/4Dt, erf(z)=(2/\m)[§exp(-u?)du. The func-

the reaction zone the local properties of the reactions arBonsFi(z), F»(z), andF3(z) are shown in Fig. ().

scaled as-t¥%, and are determined by quasistatic equations. In the long-time limit let us assume that the solution may
Consider a system of the two competing irreversible reacbe presented on two scalgs]: the diffusion length scale

tions, with initially separated reactant#\(, A, from the ~ Dt and the reaction width scate~t*</Dt. Likewise
right side andB from the left side, the pure kinetic consideratidme., on the basis of the Egs.
(3)—(7) without diffusion term$ the long-time behavior of
A;+B—C4, (1)  the system is determined by the valwgst-c,, a,+c,, and
b+c,+c, and relations between them. One can define a
A,+B—C,. (2 relation between thé\; and A, components from one side

and theB component from the other sidg +a,—b, which
The initial concentrations ok, A,, andB area,q, asg, and  equals to F1(z)+F,(z)—F5(z). This quantity can be

by, respectively. greater, less, or approximately equal to zero, depending on
The process is described by the following set of reactionthe dimensionless coordinate

diffusion equations for the concentrationsAf, A,, B, C4, Let us denote the dimensionless locationzgyfor which

andC,: a,+a,—b=0, namely, it satisfies
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F,(z) +F,(z)

FIG. 1. (a) Forms of theF,(z), F,(z), and

COMPONENT CONCENTRATIONS

3 F3(z) functions as defined in Eq$9)—(11); (b)

z the asymptotic profiles of the components calcu-
lated on the basis of Eq&l3)—(15) and(18) and
(19) on the~ /Dt scale, i.e., as a function af

1 All component concentrations are expressed in

units of by. The values ofa;q/by=1.6 and
a,0/by=0.4 are used.

ay;+a,—b=F;(z9) +F(z9) —F3(z0)=0.

(12

For z<zy, i.e.,a;+a,—b<0, i.e., there is an excess Bf
compared toA; and A,. Since in the long-time period, the
guantities ofA; and A, are small, one can assumg~a,
~0. Then we have from Eq$9)—(11)

b~F3(z) —F1(2) —Fx(2), 13
c1~F4(2), (14
co~Fy(2), (15

which describe the independent diffusion®fC,, andC,
next to the regiorz=z,.

For z>z, (a;+a,—b>0) the value ofb is small com-
pared toa; anda,. Then in the long-time period it follows
from Egs.(9)—(11) that

a;ta,~F1(2)+F,(2)—F3(2). (16)

Eliminating b from Egs.(3) and(4), one obtains

(&a]_/(?t - D(?Zal /ﬁXZ)/k1a1= ((9a2/(9t - D(?Zaz /&XZ)/kZaZ y
(17)

so that from Eqs(16) and(17) the profiles ofA; andA, next
to the regiorz=z, are controlled by diffusion equations and
given by the expressions

a;~a;{l—-[1—erf(2)]/[1—erf(zy)]}, (18

a,~ay{l—[1—erf(2)]/[1—erf(zy)]}. (19

From Eq.(16) the sum ofA; andA, concentrations tends
to zero forz—z, and thus the values &, andA, concen-
trations tend to zero as well. The expressionsdprandc,
can be calculated from Eq&) and(10).

For the regiore=z,, i.e., wherea;+a,—b~0, one can
follow Koza's approach15] and write down the following
quasistatic equations:

0= Dﬂzal/&xz_ Rl! (20)

0=Dd%a,/x*—R,, (21)
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0=Dd’b/dx*—R;—R,, (22)
0=Dd%c,/x*+Ry, (23
0=Dd%C,/x*+R,. (24)

The boundary conditions for Eq$20)—(24) can be ex-
pressed in the form of-Dda, /dx=const. t~ Y2 etc. This
form follows from the condition that neay, the solution of
Egs. (20)—(24) must coincide with Eqs(13)—(15) and with

scale~ /Dt obtained on the basis of the asymptotic expres-
sions(13)—(15) and (18)—(19) are presented in Fig.(4).

The above heuristic consideration is based on the analysis
of the kinetics equations. It is possible to present a qualita-
tive analysis of the system from a physical point of the view.
It is known that for initially separated components both
single irreversible reactions create reaction fronts. This
shows that for considered system with two competing irre-
versible reactions both reaction fronts must be located only
in one place to an accuracy of reaction front widths"®,
Indeed, if the reaction fronts are located in different places,

Egs. (18—(19). The same form of equations and boundarythen in the region between fronts there is no compoient

conditions as in the single irreversibfe+B— C reaction-

such as there is no compondhto the right of the left front.

diffusion system determines the same dependences of tiidowever, componenB must exist to the left of the right

reaction zone characteristics on time,~t"6, R;(x1,t)
~t*ig, Ro(Xg,t)~t 23 a;~t 8 a,~t™® and b
~t

front. The contradiction demonstrates that both reaction
fronts must be located in one place. Taking this into account
all the long-time characteristics of the system can be calcu-

So there is one reaction zone with complex structure ifated in the lines of approach developed for single irrevers-
long-time irreversible regime. The component profiles on theble reaction case.
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The validity of the properties of the process can be tested-Ryopap~n~2°% and ¢ —Xs2)~n*%*"% The calculated
by numerically solving the reaction-diffusion equatiqB3—  time exponents are like the asymptotic solution values.
(7). They were solved by the exact enumeration method Notice that the problem being considered in this paper
[4,8], which is basically equivalent to discretization of equa-was studied in the framework of the mean-field approxima-
tions, both in time and in space. A discrete lattice in onetjon. It is natural to assume that this approximation is valid
dimension is considered. At first the diffusion step is calcu-only for the spatial dimension larger than the definite critical
lated and then only the reactions are taken into account. Thgajued,, like the single irreversible reactioh+B—C. The
equations describing the reaction step were obtained on thestailed analysis of restrictions on use of the mean-field ap-
basis of approximation without the diffusion termsi(j,n  proximation and the determination of the correct valuelof
+1)=ay(j,n) +Riecal(j), Wherej is the discrete spatial require taking into account fluctuations and this is not carried
pOint. As in Ref[4] the time Step equals 1. The ConstantSOut here. At the same time, Ihc]_: k21 then our pr0b|em co-
used arek;=1.0 andk,=0.1. incides with a singleA+B—C reaction case and so the

In Figs. 2a) and 2b) the results of the numerical calcu- rough evaluation ofl, may be taken as 2.
lation of the component profiles and reaction rate profiles |t is shown that the solution can be constructed as the
Ri1(x,t) andRy(x,t) are shown, respectively. The profiles for combination of the two scale solutions: on diffusion length
timesn=5x10°, 1(°, 2x10° are presented in coordinates gegle~ /Dt and on reaction zone width w< \Dt. Heuris-
j/n?and (- jo)/n"*for the components and reaction rates, ic analysis of mean-field reaction-diffusion equations con-
respectively. The coincidence of the profiles for the differentirmed by numerical simulation shows that the patterns are
periods of time confirms the asymptotic form of the analyti-sjmijlar to a single-reaction case. It can be presented as one-
cal solution. For comparison of the asymptotic solutions Eqsreaction zone pattern. Generalization on arbitrary values of
(12—(14) and (17) and (18) component profiles on scale gjffusion constants can be performed in the line of Koza’s
~ Dt are also presented. The analysis of the asymptotigpproact15,27.
behavior of the system for timas<2x 10"® show the fol-

lowing time dependences:wi~n"%3  w3i~n~032
Rriocain(Xr1,n)~n~ %67 Riocaiz(Xt2,n) ~n~ %67, I am thankful to H. Taitelbaum for discussions and a criti-

Rriocaln(Xt1,M)~Nn"%87  Rigcain(X2,n)~n"%% Ryopan  cal reading of the manuscript.
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