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Theory for competing reactions with initially separated components
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The asymptotic long-time properties of a system with initially separated components and two competing
irreversible reactionsA11B→C1 andA21B→C2 are studied. It is shown that the system is characterized by
a single reaction zone, with width growing liket1/6, in which both reactions occur. Numerical computations of
the mean-field kinetic equations confirm these asymptotic results.
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The behavior of irreversible reaction-diffusion system
with initially separated reactants has attracted much rese
interest in the last decade@1–22#. The elementary irrevers
ible reaction A1B→C with initially separated reactant
leads to the formation of a distinctive reaction zone. G´lfi
and Rácz @1# have shown that in the long-time limit th
reaction zone properties scale asxf;t1/2, w;t1/6, R(xf ,t)
;t22/3, andR(t);t21/2, wherexf andw are the center co
ordinate and the width of the reaction front, respective
R(xf ,t) and R(t)[*R(x,t)dx are the local and the globa
reaction rate, respectively. These scaling relations, obta
from the mean-field equations@1#, are valid for space dimen
sion d greater than the critical dimensiondc52 @6#. These
results have been confirmed by a variety of approac
@1,7,9–12,14,15#, including experiments @2,3,5,16–20#.
More complex reactions such asmA1nB→C were studied
in Refs.@6,9,12,21#.

A possible level of complexity of the single irreversib
reaction system is the system with two competing elem
tary irreversible reactionsA11B→C1 andA21B→C2. This
system exhibits rich spatiotemporal reaction zone pattern
served in experiment@18,19#. New patterns of properties o
this system, such as two reaction centers, and distinctive
tiotemporal behavior ofR(t) and R(x,t), are predicted by
numerical calculations.

In this Brief Report we study analytically and numerica
the long-time asymptotic behavior of the system of two ir
versible reactionsA11B→C1 andA21B→C2. It is shown
that the long-time dynamics is similar to the single irreve
ible reaction pattern, i.e., both irreversible reactions on
macroscopic scale;ADt occur in one reaction zone. Insid
the reaction zone the local properties of the reactions
scaled as;t1/6, and are determined by quasistatic equatio

Consider a system of the two competing irreversible re
tions, with initially separated reactants (A1 , A2 from the
right side andB from the left side!,

A11B→C1 , ~1!

A21B→C2 . ~2!

The initial concentrations ofA1 , A2, andB area10, a20, and
b0, respectively.

The process is described by the following set of reacti
diffusion equations for the concentrations ofA1 , A2 , B, C1,
andC2:
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]a1 /]t5D]2a1 /]x22R1 , ~3!

]a2 /]t5D]2a2 /]x22R2 , ~4!

]b/]t5D]2b/]x22R12R2 , ~5!

]c1 /]t5D]2c1 /]x21R1 , ~6!

]c2 /]t5D]2c2 /]x21R2 , ~7!

with initial conditions

a1~x,0!5a10H~x!,a2~x,0!5a20H~x!,b~x,0!

5b0@12H~x!#,c1~x,0!5c2~x,0!50. ~8!

H(x) is the Heaviside step function. In the mean-field a
proximation we haveR15k1a1b, R25k2a2b, wherek1 and
k2 are the forward reaction kinetics constants for reactio
~1! and ~2!, respectively. For simplicity, the same diffusio
constantD of all components is assumed. Since the su
a11c1 , a21c2, and b1c11c2 are controlled by ordinary
diffusion equations, they are given by

a11c15a10@11er f~z!#[F1~z!, ~9!

a21c25a20@11er f~z!#[F2~z!, ~10!

b1c11c25b0@12er f~z!#[F3~z!. ~11!

Herez[x/A4Dt, er f(z)5(2/Ap)*0
zexp(2u2)du. The func-

tions F1(z), F2(z), andF3(z) are shown in Fig. 1~a!.
In the long-time limit let us assume that the solution m

be presented on two scales@1#: the diffusion length scale
;ADt and the reaction width scalew;t1/6!ADt. Likewise
the pure kinetic consideration@i.e., on the basis of the Eqs
~3!–~7! without diffusion terms# the long-time behavior of
the system is determined by the valuesa11c1 , a21c2, and
b1c11c2 and relations between them. One can define
relation between theA1 and A2 components from one sid
and theB component from the other sidea11a22b, which
equals to F1(z)1F2(z)2F3(z). This quantity can be
greater, less, or approximately equal to zero, depending
the dimensionless coordinatez.

Let us denote the dimensionless location byz0 for which
a11a22b50, namely, it satisfies
©2002 The American Physical Society04-1
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FIG. 1. ~a! Forms of theF1(z), F2(z), and
F3(z) functions as defined in Eqs.~9!–~11!; ~b!
the asymptotic profiles of the components calc
lated on the basis of Eqs.~13!–~15! and~18! and
~19! on the;ADt scale, i.e., as a function ofz.
All component concentrations are expressed
units of b0. The values ofa10/b051.6 and
a20/b050.4 are used.
e
d

a11a22b5F1~z0!1F2~z0!2F3~z0!50. ~12!

For z,z0, i.e., a11a22b,0, i.e., there is an excess ofB
compared toA1 and A2. Since in the long-time period, th
quantities ofA1 and A2 are small, one can assumea1'a2
'0. Then we have from Eqs.~9!–~11!

b'F3~z!2F1~z!2F2~z!, ~13!

c1'F1~z!, ~14!

c2'F2~z!, ~15!

which describe the independent diffusion ofB, C1, andC2
next to the regionz>z0.

For z.z0 (a11a22b.0) the value ofb is small com-
pared toa1 anda2. Then in the long-time period it follows
from Eqs.~9!–~11! that

a11a2'F1~z!1F2~z!2F3~z!. ~16!

Eliminating b from Eqs.~3! and ~4!, one obtains
03710
~]a1 /]t2D]2a1 /]x2!/k1a15~]a2 /]t2D]2a2 /]x2!/k2a2 ,
~17!

so that from Eqs.~16! and~17! the profiles ofA1 andA2 next
to the regionz>z0 are controlled by diffusion equations an
given by the expressions

a1'a10$12@12er f~z!#/@12er f~z0!#%, ~18!

a2'a20$12@12er f~z!#/@12er f~z0!#%. ~19!

From Eq.~16! the sum ofA1 andA2 concentrations tends
to zero forz→z0 and thus the values ofA1 andA2 concen-
trations tend to zero as well. The expressions forc1 andc2
can be calculated from Eqs.~9! and ~10!.

For the regionz>z0, i.e., wherea11a22b'0, one can
follow Koza’s approach@15# and write down the following
quasistatic equations:

05D]2a1 /]x22R1 , ~20!

05D]2a2 /]x22R2 , ~21!
4-2
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FIG. 2. A1 , A2 , B, C1, and C2 component
profiles ~a! and the local reaction rateR1( j ,n)
and R2( j ,n) profiles ~b! calculated by direct
simulation of the reaction-diffusion equation
~3!–~7! (k151.0 and k250.1) at times n
553105, 106, 23106 are shown. All compo-
nent concentrations are expressed in units ofb0.
The values ofa10/b051.6 anda20/b050.4 are
used in calculations.
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05D]2b/]x22R12R2 , ~22!

05D]2c1 /]x21R1 , ~23!

05D]2c2 /]x21R2 . ~24!

The boundary conditions for Eqs.~20!–~24! can be ex-
pressed in the form of2D]a1 /]x5const. t21/2, etc. This
form follows from the condition that nearz0 the solution of
Eqs. ~20!–~24! must coincide with Eqs.~13!–~15! and with
Eqs. ~18!–~19!. The same form of equations and bounda
conditions as in the single irreversibleA1B→C reaction-
diffusion system determines the same dependences o
reaction zone characteristics on timew0;t1/6, R1(xf 1 ,t)
;t22/3, R2(xf 2 ,t);t22/3, a1;t21/3, a2;t21/3, and b
;t21/3.

So there is one reaction zone with complex structure
long-time irreversible regime. The component profiles on
03710
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e

scale;ADt obtained on the basis of the asymptotic expr
sions~13!–~15! and ~18!–~19! are presented in Fig. 1~b!.

The above heuristic consideration is based on the ana
of the kinetics equations. It is possible to present a qual
tive analysis of the system from a physical point of the vie
It is known that for initially separated components bo
single irreversible reactions create reaction fronts. T
shows that for considered system with two competing ir
versible reactions both reaction fronts must be located o
in one place to an accuracy of reaction front widths;t1/6.
Indeed, if the reaction fronts are located in different plac
then in the region between fronts there is no componenB,
such as there is no componentB to the right of the left front.
However, componentB must exist to the left of the righ
front. The contradiction demonstrates that both react
fronts must be located in one place. Taking this into acco
all the long-time characteristics of the system can be ca
lated in the lines of approach developed for single irreve
ible reaction case.
4-3
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The validity of the properties of the process can be tes
by numerically solving the reaction-diffusion equations~3!–
~7!. They were solved by the exact enumeration meth
@4,8#, which is basically equivalent to discretization of equ
tions, both in time and in space. A discrete lattice in o
dimension is considered. At first the diffusion step is calc
lated and then only the reactions are taken into account.
equations describing the reaction step were obtained on
basis of approximation without the diffusion terms:a1( j ,n
11)5a1( j ,n)1Rlocal( j ), where j is the discrete spatia
point. As in Ref.@4# the time step equals 1. The constan
used arek151.0 andk250.1.

In Figs. 2~a! and 2~b! the results of the numerical calcu
lation of the component profiles and reaction rate profi
R1(x,t) andR2(x,t) are shown, respectively. The profiles f
times n553105, 106, 23106 are presented in coordinate
j /n1/2 and (j 2 j 0)/n1/6 for the components and reaction rate
respectively. The coincidence of the profiles for the differe
periods of time confirms the asymptotic form of the analy
cal solution. For comparison of the asymptotic solutions E
~12!–~14! and ~17! and ~18! component profiles on scal
;ADt are also presented. The analysis of the asympt
behavior of the system for timesn<231016 show the fol-
lowing time dependences: w1

2;n20.34, w2
2;n20.33,

Rrlocal1(xf 1 ,n);n20.67, Rlocal2(xf 2 ,n);n20.67,
Rrlocal1(xf 1 ,n);n20.67, Rlocal2(xf 2 ,n);n20.67, Rglobal1
ss

H.

s.
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;Rglobal2;n20.50, and (xf 12xf 2);n10.171. The calculated
time exponents are like the asymptotic solution values.

Notice that the problem being considered in this pa
was studied in the framework of the mean-field approxim
tion. It is natural to assume that this approximation is va
only for the spatial dimension larger than the definite critic
valuedc , like the single irreversible reactionA1B→C. The
detailed analysis of restrictions on use of the mean-field
proximation and the determination of the correct value ofdc
require taking into account fluctuations and this is not carr
out here. At the same time, ifk15k2, then our problem co-
incides with a singleA1B→C reaction case and so th
rough evaluation ofdc may be taken as 2.

It is shown that the solution can be constructed as
combination of the two scale solutions: on diffusion leng
scale;ADt and on reaction zone width;w!ADt. Heuris-
tic analysis of mean-field reaction-diffusion equations co
firmed by numerical simulation shows that the patterns
similar to a single-reaction case. It can be presented as
reaction zone pattern. Generalization on arbitrary values
diffusion constants can be performed in the line of Koz
approach@15,22#.

I am thankful to H. Taitelbaum for discussions and a cr
cal reading of the manuscript.
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